Parallel execution of quantum gates in a long linear ion chain via Rydberg mode shaping
نویسندگان
چکیده
منابع مشابه
Fast Rydberg gates without dipole blockade via quantum control
We propose a scheme for controlling interactions between Rydberg-excited neutral atoms in order to perform a fast high-fidelity quantum gate. Unlike dipole-blockade mechanisms already found in the literature, we drive resonantly the atoms with a state-dependent excitation to Rydberg levels, and we exploit the resulting dipoledipole interaction to induce a controlled atomic motion in the trap, i...
متن کاملImplementation of Single-Qutrit Quantum Gates via Tripod Adiabatic Passage
We proposed and analyzed implementation of the single-qutrit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by pulsed laser fields. This technique requires only the control of the relative phase of the driving fields but do not involve any dynamical or geometrical phases, which make it independent of the other interaction details: ...
متن کاملAll-optical quantum information processing using Rydberg gates.
In this Letter, we propose a hybrid scheme to implement a photonic controlled-z (CZ) gate using photon storage in highly excited Rydberg states, which controls the effective photon-photon interaction using resonant microwave fields. Our scheme decouples the light propagation from the interaction and exploits the spatial properties of the dipole blockade phenomenon to realize a CZ gate with mini...
متن کاملExtension of Linear Isotherm Regularity to Long Chain Alkanes
In this work, we consider each normal alkane as a hypothetical mixtureof methyland methylene groups, in which the interaction potential of each pair is assumed to be the average effective pair potential. Then, the LIR equation of state (EOS) is extended for such a hypothetical mixture. Also, three basic compounds, namely, propane, n-butane and cyclohexane, are used to obtain the contributio...
متن کاملOptimal quantum chain communication by end gates
The scalability of solid state quantum computation relies on the ability of connecting the qubits to the macroscopic world. Quantum chains can be used as quantum wires to keep regions of external control at a distance. However even in the absence of external noise their transfer fidelity is too low to assure reliable connections. We propose a method of optimizing the fidelity by minimal usage o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2013
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.87.052304